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Section I
INTRODUCTION
1. Background
Most materials exhibit strain rate sensitivity giving increases in uniaxial stresses as the
strain rate increases. In addition geomaterials are pressure sensitive, the effect of increased
hydrostatic pressure being an increase in the quasi-static material strength, especially
compressive strength. Also, geomaterials exhibit volumetric compressibility and/or dilatancy
when loaded in uniaxial or triaxial tests. Both compressibility and dilatancy are also rate
dependent: in slower tests, generally, more dilatancy and more compressibility is recorded. The
strain rate effect on unconfined uniaxial compressive strength of concrete is presented by
Watstein and Boresi [1952], Reinhardt [1987], Cowell [1996] and Malvern [1986], rate effects
on tensile strength of concrete are given by Ross et al. [1989, 1995, 1996] and Weerheijm
[1992], and the effects of confining pressure on concrete material are presente& by Osborn
[1982], and Osborn and Matuska [1978], Derucher et al.[1998], etc. The combined effects of
| intermediate strain rate and low confining pressure. on the compressive strength of concrete are
presented by Malvern and Jenkins [1990]. Considerable triaxial data on mortar, rock (e.g. rock
salt, granite, sandstone, andesite, etc.), and sand are presented in Cristescu [1989] and in
Cristescu and Hunsche [1998]. However, very little dynamic triaxial data have been reported. |
Many constitutive relations for concrete such as that of Osborn[1982], Osbom and
Matuska[1978] are available for use in hydrocode calculations, other material models are
available in numerical codes such as EPIC (Johnson and Stryk [1992]), CTH (Bell[1994]) and
HULL (Matuska et al.[1991]). In an effort to combine rate and hydrostatic effects and to

describe both compressibility and dilatancy, a three dimensional nonassociated



elastic/viscoplastic (EVP) constitutive model has been developed by Cristescu [1989]. The

general form of this equation is shown below:

., 6; (1 1), w{) \ oF
2% (L s vk (1-—2 ) 1
& ZG+(3K 2GJC’"+ T<1 H(a,,,)>aa,., M

Instantaneous Response  Transient Creep Response

where:

W = Irreversible Stress Wdrkper unit volume & = Strain Tensor

F = Viscoplastic Potential o;; = Stress Tensor
H = Yield Function o = Mean Stress

kr= Viscosity Coefficient 3= Kronecker Delta

K = Bulk Modulus <A>=12 (A+|A])
G = Shear Modulus .

No a priori assumptions regarding the specific mathematical expressions of the yield
‘ﬁmction H(o) and of the viscoplastic potential F(o) are made. These two functions are
generally distinct (nonassociated). Also the two elastic parameters K and G, are generally not
constant. Since geomaterials may exhibit both compressible and dilatant behavior, the concept pf
compressibility/dilatancy boundary (see Cristescu, [1989]) is integrated in the model. This
permits to capture the non-linear compressibility observed for low shearing stresses and shear
induced dilatancy observed for higher shearing‘stresses using a unique continuous yield function
and a unique viscoplastic potential to be us‘ed for all confining pressures. This is a significant
advantage of this model over rate sensitive cap models, since it captures in a continuous way the

transition between the two regimes of volumetric behavior. The basic experiment required for the -




EVP formulation is a triaxial compression test in which a specimen is first subjected' to
hydrostatic test followed by a deviatoric test.” Using the triaxial test data, all the parameters
involved in the EVP equation can be determined.

The Advanced Weapons Effects Facility (AWEF) of Eglin AFB recently acquired a 50.8mm
(2.0 in) diameter split Hopkinson pressure bar (SHPB) and as part of this study, assistance was
given in the assembly and check out of this device. As part of this check out procedure, several
tests on concrete grout cubes were conducted to determine the effects of dynamic compression
on the ultrasonic wave velocity of each of the cube’s three orthogonal directions.

In rock, granite, concrete and other cementitious materials where random oriented
microcracks are present, a phenominon sometimes referred to as “axial columnar splitting under
axial compression” occurs, where crack growth orients itself in a direction parallel to the
maximum compressive stress. In uniaxial compression of concrete and rock, cracking occurs
parallel to the compression load even though no lateral tensile stresses are . applied: In
comparison with the stress state under tension, compressive loading leads to much more crack
arrest, refelected in a much longer intervalv of stable crack growth and a pronounced non-linear
behavior (Weerheijm, [1992]). Similarly, diametrical cracking occurs in a splitting tensile or
Brazilian test when a cylindrical specimen is loaded in compression along the cylinder length.
Cracking in concrete and other quasi-brittle materials parallel to the maximum appliéd
compression stress was first reported by Brace and Bombolakis [1963]. Fracture mechanics
offers the basic tools, i.e. criterion for crack growth initiatioh and energy criterion, which deals
with the energy supply and energy dissipation during crack growth. An overview on the
application of fracture mechanics on concrete can be found in Mindess [1983]. A mathematicél

theory of the phenomenon, which doesn't make use of singular integral equations was developed




by Nemat-Nasser and Horii [1982]. Another approach is the Continuous Damage Mechaﬁics
approach (CDM). In CDM models, the internal damage is described by a scalar (e.g. Lemaitre
and Chaboche [1984], Mazars[1980] ), vector (¢.8. Krajcinovic and Fonseka [1981]) or tensor
(Chaboche [1995], Halm and Dragon [1996]). The main disadvantage of CDM models is that
they do not describe the real mechanism of dar{lage extension or arrest in concrete. Another
approach is to combine the random material composition and crack development in the
description of the concrete response fracture mechanics features and Monte Carlo techniques
have been used (e.g. Zaitsev[1986]). Schreyer and Gao [1998] use a discountious bifurcation,
theory to describe crack extension in compression.

Experimental verification and identification of axial cracking under dynamic axial
compression using a split Hopkinson pressure bar (SHPB) are reported by Ross [1989], Malvern
and Jenkins [1992],. In Malvern et. al.[1992] crack patterns observed in post test photographs
taken after the specimen was soaked in concrete restorer, mixed with zyglo to enhance the
patterns under ultraviolet light are reported In Ross [1992] high speéd photography was used to

"track crack formation during the dynamic testing. A computer imaging technique was used to
determine crack density and crack growth. Correlation of experimeﬁtal crack growth parameters
experimentally determined by Malvern et al. [1992] and Ross [1992] and theory of Krajcinovic
[1984], Budiansky and O’Connel [1976] and Taylor et al. [1986], were reasonable except for the
prediction of Poisson’s ratio. The specimens used by Ross [1992] were instrumented with
electrical resistance strain gages in the axial and transverse directions. Both volumetric strain
and Poisson’s ratio were determined. The volumetric strain obtained by Ross [1992] indicated
that after a rather linear compressive strain, swelling and axial cracking occurred, resulting in

dilatancy and giving rise to an increasing Poisson’s ratio rather than a decreasing value as




predicted by Budiansky and O’Connel [1976] and Taylor et al.[1986]. This axial cracking and
dilatancy is also observed in rock and granité as mentioned previously in the citations from
‘Cristescu [1989].

Further research using cylindrical mortar specimens was conducted by Ross [1998] using
the SHPB on 50.4mm and 76.4mm diameter specimens. Mortar specimens were loaded in
compression in several increments of the failure stress. Ultrasonic wave propagation speeds
were measured axially both before and after testing. The axial ultrasonic wave speed changed
very little with increasing compressive loa‘d. However, post test ultrasonic wave speeds
measured in only one transverse direction to the loading showed a significant reduction in those
specimens loaded at loads near the failure stress.

2. Objective

The major objective of this study will be to produce unconfined and confined, quasi-static
and dynamic data on concrete, mortar and granite in order to fully develop a three dimensional
elastic/viscoplastic constitutive model of type given by Eq. (1) for each of these materials. The
Isecondary objective is to implement the newly developed constitutive models in a computational
code in order to analyze the penetration of kinetic energy penetrators into concrete and granite or
combinations thereof. The EVP constitutive equation models a solid body with viscous
_properties in which dynamic loadings propagate by two types of waves, i.e. both cornpressic;;l
* and shearing waves. Thus, the EVP model can describe dynamic compressibility, propagation of
compression and shearing waves, and failure produced by o;ferstress, which is a departure from

the current practice. A minor objective is to initiate a preliminary study of damage in concrete

due to dynamic loading.



3. Methodology/Approach

The basic experiments needed to obtain material properties for concrete, mortar and granite
are quasistatic and dynamic tests for both confined and unconfined conditions. Quasistatic
hydrostatic tests with several loading-unloading-reloading cycles are necessary to obtain basic
informatioﬁ regarding the compressibility characte_:ristics of the given materials. Also, from these
tests the energy of deformation may be computed for determination of the hydrostatic part of the
yield function H(0). Conventional triaxial compression (CTC) tests at several confining
preésures are necessary to produce stress-strain behavior and volume change relations and thus
determine basic effects of different variables such as (1) compaction pressure over a large range,
(2) confining pressure on the pattern of volumetric behavior, (3) stress-path dependency, (4)
strain rate and time to failure on strength, (5) strain rate on the compressibility/dilatancy
| boundary. The data obtained in such tests have direct bearing on the formulation and calibration
of the proposed models since they permit to determine the deviatoric part of the yfeld function
H(o), which is a relaxation boundary for dynamic loading, and the viscoplastic potential.F( 0.

The quasistatic tests for both confined and unconfined concrete tests were to be
completed by Waterways Experiment Station (WES) under a separate agreement. Unconfined
and confined quasistatic tests on concrete, mortar and granite were conducted at the AWEF using
the newly acquired material test machine of 2700 kN compressive capacity. Confined aﬁd
unconfined dynamic tests on concrete, mortar and granite were conducted by UFGERC using the
3.00 in (76.2 mm) diameter split Hopkinson iaressure bar ('SHPB). A confining pressure cell
developed for the experiments of Malverﬁ et al., [1992] and the SHPB, will be used to
accomplish the dynamic confined tests. Small cube specimens of grout concrete Were tested

quasistatically and dynamically to study columnar fracture and splitting, and the effects of these




i)

fractures on the ultrasonic wave velocity in directions transverse to the compressive load

direction.
‘4. Conclusions
Fairly low confining pressure in both quasistatic and dynamic tests will cause a
considerable increase in the compressive strength of cementitious materials and geomaterials.
- In addition, the material response relative to dilatancy and fracture are changed due to
confining pressure. Material fracture and total failure under unconfined compressive
loadings may be prevented under low confining pressures. This reduction of fracture appears
to have a more noticeable effect on mortar and granite than on concrete.

The EVP model captures the basic features of the material behavior such as strain-
hardening, confining pressure, rate influence, creep and relaxation phenomena. Although the
model developed is applicable to fully 3-D stress conditions, all the parameters involved can
be determined from the results of a few quasistatic and dynamic tests. The agreement

between model prediction and data is rather good.




Section II
EXPERIMENTS
1. Introduction

Confined and unconfined, mortar, concrete, and granite tests were performed
quasistatically using the MTS material test machine at the AF Advanced Weapons Effects
Facility (AWEF) and dynamically using the University of Florida Split Hopkinson Pressure Bar
(SHPB). For the confined pressure tests the pressure cell, designed especially for the SHPB, was
used in both the MTS and SHPB. A schematic of the SHPB is shown in Figure 1 and a
schematic of the pressure cell is shown in Figufe 2.

For all the tests, all specimens were nominally 76.2mm diameter, 76.2mm long
(3"Dx3”L) and were tested in compressive. Each specimen was instrumented with two sets of
diametrically opposed 25.4mm long (1.0”L) electrical resistance strain gages. One gage of each
strain gage set was aligned in the longitudinal specimen direction and the other gagef was aligned
in the transverse or circumferential specimen direction. All strain gages were affixed near the
" mid- length of the specimen. This type instrumented specimen, shown in Figure 3, gives both
specimen longitudinal and transverse strains, which may be used to determine the volumetric
strain. The volumetric strain is defined as the sum of longitudinal, radial and transverse strains;
however, due to the loading configuration on the cylindrical specimen it may be shown that the
radial and transverse strains are equal. This gives a volumetric strain ey as the sum of the
longitudinal strain € plus twice the transverse strain €1, and ;avritten as

gy=¢g+ 25;1 (2)
All loads and strains are recorded electronically so the formation of the volumetric strain can be

performed rather easily in the computer. In the testing of confined geomaterials and concrete
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(triaxial cell tests), compressive stresses and strains are considered positive and this sign
convention is used in this study.

The significance of the volumetric strain is not readily apparent for a standard unconfined
uniaxial concrete compression test. For this test radial expansion tends to occur immediately and
as soon as the tensile strength is exceeded, considerable volumetric expansion, defined as

dilantancy, occurs and the specimen fails at the peak compressive strength. For the unconfined
concrete compression test the 2et term of Eq. (2) will exceed the longitudinal strain term € early
in the test and the volumetric strain will change sign indicating severe expansion and dilantancy.
However, if a transverse confining pressure is applied to the specimen during the axial
compression then the radial expansion is restricted and the volumetric strain tends to remain
positive and dilantancy is prevented. This results in an increased axial compressive strength.
Some of these features will be evident and discussed later, using some of the data of the next
sections. \
2. Mortar Tests

Tests were continued in May — June 1999 on compressive tests of mortar. Some initial
tests were conducted in late 1998, on mortar and one of those unconfined quasistatic tests,
QSM3B, is included here. The results of this test are given for refefence and marked as Figure 4,
the stress-strain curve and Figure 5, the stress-volumetric-strain curve. The mix proportions for
mortar are given in Table 1.

Two quasistatic unconfined modulus to'sts were conducted in May-June 1999 and one of
those tests, QSMS, is included. Figure 6 sﬂows the stress-time curve and the Figure 7 shows the

stress-strain curve. The average modulus and average compressive strength are given on Figure

7 are 23.38 GPa (3.39E + 6 psi) and 55.48 MPa (8.04 ksi), respectfully.

12




TABLE 1

MIX PROPORTIONS FOR MORTAR

Portland Cement 450 g
Sand Sieve #4 ‘ 1620 g
WRDA-19, 0.5% 37g
“F” Fly Ash 297 g
Water, w/c =0.55 ) 411 g
TABLE 2
MIX PROPORTIONS FOR SAC-5 CONCRETE
Portland Cement, Type 1 445 1bs.
Fly Ash , _ 94 1bs.
Sand, River Run 1417 lbs.
Gravel, River Run 3/8” 1749 lbs.
Water 246 lbs.
WRA, 300N 22 fl. oz.
WRA, Rhesbuild 716 54 fl. oz.

13
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Quasistatic confined mortar tests were conducted during May-June, 99 at confining
pressures of 172 MPa (250 psi), 3.45 MPa (500 psi) and 6.90 MPa (1000 psi) at a strain rate of
125 E — 6/sec. A stress-strain curve and a stress-volumetric strain curve for each are given in
Appendix A as Figures A-1t0 A-8. An extra test for the 6.90 MPa confining pressure was
analyzed and shown in Figures A-7 and A-8. This was done as the volumetric strain of QSMC9
of Figure A-6 never went negative and Figure A-8 confirms that the volumetric strain at the 6.90
MPa confining pressure shows very little negative strain or minimal swelling before failure.

Several dynamic confined mortar tests were performed in May-June 99 using the 76.2
mm diameter SHPB at the GERC. Selected confining pressure and strain rates were analyzed
and shown in Appendix A as Figures A-9 to A-18. As indicated in the tests of late 1998 and
noted here the confining pressure rises during the dynamic tests but appears to reach a mmm
of approximately 12 — 15 MPa regardless of initial confining pressure ot strain rate. The other
observation worth noting is for the dynamic confined tests with initial confining pre;sme of 6.90
MPa (1000 psi), the volumetric strain is monotonically increasing for all strain rates tested.
ABased on this a quasistatic confined test at a confining pressure of approximately 10 MPa (the
average confining pressure of the dynamic tests) would probably show the same general trend of
a monotonically increasing volumetric strain. Details of all the tests discussed here are listed in
Table 3.

3. Concrete Tests

Tests were continued in May — June, 1999 on compressive test of concrete. Two
quasistatic unconfined modulus tests were conducted in May ~ June, 1999 and one of those tests,

QSC-1, is included. Figure A-19 shows the stress-time curve and Figure A-20 shows the stress-

18




TABLE 3

COMPRESSIVE DATA FOR MORTAR

SPECIMEN CONFINING STRAIN RATE FIGURE
PRESSURE — MPa 1/SEC NUMBER
QSM3B UNCONFINED 1.18E-6 4,5
QSM5 UNCONFINED 1.25E-6 6,7
QSMC5 1.72 1.25E-6 A1, A2
QSMC4 345 1.25E-6 A3, A4
QSMC9 6.90 1.25E-6 A5, A6
QSMC7 6.90 1.25E-6 A-7, A-8
DCMC27 1.72 140 A-9, A-10
DCMC20 345 80 A-11, A-12
DCMC30 6.90 52 A-13,A-T4
DCMC24 6.90 67 A-15, A-16
DCMC25 6.90 123 A-17, Al8

19




strain curve. The average modulus and average compressive strength given on Figure A-19 are
38.21Gpa (5.54E+6 psi) and 69.52 MPa (10.08 ksi), respectively. The mix proportions for
concrete are given in Table 2.

Several unconfined and confined quasistatic compressive tests on concrete were
performed using the MTS material test machine at the AWEF. For the confined tests the same
confining cell, used in the UFGERC SHPB, was used in the MTS test machine. Confining
pressures of 1.81 MPa (263 psi), 3.45 MPa (500 psi) and 6.90 MPa (1000 psi) were used at a
strain rate of 0.77E-6/sec. and those results are shown in Appendix A as Figures A-21 to A-26.
Unconfined dynamic concrete tests were conducted using the UFGERC SHPB at strain rates of
approximately 50/sec., 60/sec. and 100/sec. The results of these tests are shown in Appendix A
as Figures A-27 to A-32. Several dynamic confined tests were preformed on concrete at a
confining pressure of 3.45 MPa (500 psi) and a strain rate of approximately 50/sec. Some of the
results of these tests are shown in Appendix A as Figures A-33 to A-36. Some detail; of the tests
discussed above are listed in Table4.

| 4, Granite Tests

Several compressive strength tests were performed on rose granite whose quasistatic
compressive strength and modulus are 20.16 Ksi (139.0 MPa) and 12.25 Msi (84.48 Gpa);
respectfully, with a specific weight of 172 Ibs/ft® (2.21 kg/m®). One unconfined strength ar;d
modulus test is shown in Figure 8. The corresponding volumetric, transverse and longitudinal
strains for the same specimen are shown in Fi'gm'e 9. A qﬁasistatic confined granite test, with
500 psi (3.45 MPa) confining pressure was‘performed and results are shown in Figures 10 ar}d
1.1. Dynamic unconfined compression tests were performed in the SHPB and results of one of

those tests are shown in Appendix A as Figures A-37 to A-38. Results of an additional dynamic

20




TABLE 4

COMPRESSIVE DATA FOR CONCRETE

SPECIMEN CONFINING STRAIN RATE FIGURE

PRESSURE - MPa 1/SEC NUMBER

QSC1 UNCONFINED | . 0.77E-6 A-19, A-20
QSCC1 3.45 0.77E-6 A-21, A-22
QSCCé6 6.90 0.77E-6 A-23, A-24
QSCC12 1.81 0.77E-6 A-25, A-26
DCCU2 UNCONFINED 64 A-27, A-28
DCCU3 UNCONFINED 52 A-29, A-30
DCCUS UNCONFINED 107 A-31, A-32
DCCC3 3.40 47 A-33, A-34
DCCC4 3.57 53 A-35, 1;-36

21
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unconfined granite are shown in Figures A-39 to A-40. The results of these dynamic unconfined
granite tests appear to be somewhat different than similar tests on concrete and mortar. In
‘observing the incident, reflected and transmitted strain traces we noticed rather different
reflected pulse shapes than that of concrete tests. This will be discussed later in Section III. 1.
5. Ultrasonic Grout Tests
A. Background
Recently, the Advanced Weapons Effects Facility (AWEF) acquired a 50.8mm (2.0 in)
" diameter split Hopkinson pressure bar (SHPB) and as part of the Task 99-01, this device was
aligned, leveled and exercised to determine its integrity. As part of the check out procedure a
series of grout material cubes of nominally 35.92mm (1.414 in) on each edge, 50.8mm (2.0 in)
diagonal on each face, were fabricated and tested 1n dynamic compression in the AWEF SHPB
and quasistatic compression in the AWEF MTS material test machine. Mix proportions for the
grout are given in Table 5. Prior to these tests each of the cube specimens were r;leasured, as
shown in Table 6 and tested ultrasonically using a Portable Ultrasonic Non-destructive Digital
Indicating Tester (PUNDIT Mk-V) to measure the ultrasonic transit time in each of the
orthogonal directions. The transducer frequency was 150 kHz. The cube faces were marked so
that post-test transit times could be determined in the same directions. The objective of these
tests was to determine the effect of a uniaxial compressive stress on the ultrasonic wave speed in
the various directions of each specimen. The use of cubical specimens allows the ultrasonic
measurement in three directions. Due to limited size of tl;e 50.8mm diameter SHPB a small
‘aggregate grout concrete material was used for the specimens. Also, due to the small specimen
size, the results are presented in a normalized fashion by dividing the directional test data by

each of the unstressed directional ultrasonic wave velocity or transit time.
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TABLE 3

MIX PROPORTIONS FOR GROUT

295 kg (650 Ibs.) Type I Portland Cement (3.15 s.8.)
736 kg (1620 Ibs.) #9 Crushed Limestone (2.74 s.8.)
652 kg (1435 1bs.) Silica Sand (2.63 s.g.)

0.77 1 (26 oz.) Type A Water Reducer

133 kg (292 1bs.) Water

TABLE 6

DIMENSIONS, TRANSIT TIMES AND WEIGHT FOR GROUT CUBES

Specimen# Dim-X-Axis Dim-Y-Axis Dim-Z-Axis Time---X- Time---Y- Time---Z-- Mass

#1
#2
#3
#4
#5
#6
#7
#3
#9
#10

#11

#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31

Inches Inches Inches Millisec  Millisec
1.398 1.396 1.395 7.9 7.9
1.382 1.402 1.392 7.9 7.9
1.391 1.395 1.398 7.7 7.6
1.387 1.396 1.401 7.5 7.6
1.401 1.404 1.396 7.8 7.8
1.397 1.398 1.4 7.7 7.7
1.398 1.394 1.392 7.7 7.6
1.394 1.405 1.39 7.6 7.7
1.394 1.397 1.413 7.6 7.7
1.387 1.402 1.401 7.6 Y ¥ 4
1.405 1.402 1.397 7.6 7.7
1.398 1.397 1.396 7.6 7.7
1.374 1.396 1.392 7.4 7.5
1396 - 1402 14 7.5 7.5
1.405 1.395 1.396 7.4 . 76
1.401 1.402 1.405 7.6 7.6
1.405 1.406 1.396 76 7.7
1.401 1.389 1.4 7.6 7.6
1.394 1.402 1.396 7.5 7.5
1.399 1.404 1.396 7.7 7.6

1.39 1.4 1.4 7.4 7.5
1.394 1.399 1.403 7.7 7.7
1.396 1.394 1.392 7.9 7.6
1.399 1.394 1.397 7.8 7.8
1.403 1.4 1394 7.9 7.7
1.392 1.4 1.404 77 7.7
1.399 1.4 1.401 7.5 7.5
1.404 1.391 1.394 7.7 7.7
1.398 1.387 1.401 7.6 76
1.397 1.398 - 1.396 7.6 7.6
1.398 1.392 1.404 9.1 9.2

27

Grams

97.03
95.73
96.8
97.76
98.71
96.78
97.07
98.06
98.98
98.79
99.6
96.72
96.79
98.27
99.39
97.95
97.77
96.84
98.66
97.33
98.53
98.04
96.2
96.21
97.31
96.95
98.95
97.25
96.66
9595
95.7




B. Quasistatic Tests

Several Compressive quasistatic tests were performed on the cube grout specimens using
the 55 kips (12.35 nt) load cell of the AWEF MTS machine. Tests were run on some specimens
with the ultrasonic transducers attached to opposite faces, which measured the ultrasonic wave
transit time in a direction perpendicular to the loading direction. (See Figure 12.) The
quasistatic tests were run at a compressive loading rate of 20 psi/sec (0.138 MPa/sec). An.
example of the data showing the axial loading and change in ultrasonic wave speed is shown
later in the Results and Discussion Section.

C. Dynamic Tests

Dynamic tests on the grout cubes were performed using the 50.8mm diameter AWEF
SHPB as shown schematically in Figure 13. The cubes were fabricated with the diagonal on
each face of a nominal 2.0 in (50.8mm) length such that each loaded face fit inside the 50.8mm

diameter of the loading faces of the incident and transmitter bars. (See Figure 13.)

The 50.8mm diameter SHPB was recently transferred from Tyndall AFB, FL to the
.‘ AWEEF, then aligned and leveled under Task 99-01. The principles and procedures of operation
of this SHPB are discussed by Ross [1989]. In the compression mode as shown in Figure 13, a
striker bar impacts the incident bar and generates' a compressive stress pulse, which in time is
twice the length of the transit time of the striker bar. This pulse travels down the incident bz'u'
and impinges on the specimen, which is sandwiched between the incident and transmitter bars.
At the specimen, a portion of the pulse is reflected back into 'the incident bar and a portion of the
pulse is transmitted into the transmitter bar. 'Specimen strain is proportional to the integral of the
reflected pulse, specimen strain-rate is proportional to the reflected pulse and specimen stress is

proportional to the transmitted pulse. A typical set of stress pulses, obtained for specimen No.

28
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Figure 12. Schematlc of quasistatic compressive cube test.
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10, is shown in Figure 14. The striker bar is driven by compressed nitrogen gas, regulated in t1.1e
gas gun. A plot of the average peak stress in the incident bar versus the gas sun pressure is
shown in Figure 15. |

For the grout specimens the SHPB was initially operated at the lowest gas gun pressure
that would generate a stress pulse in the incident bar; approximately 5.0 psi (35kPa) which
resulted in a specimen stress of approximately 1360 psi (9.38 MPa). Séecimens were then tested'
in 0.5 psi increments up to 9.0 psi (62 kPa) at which the specimen fractured at a specimen stress
of approximately 10,000 psi (69 MPa). The strain rate for these tests ranged from 1.0 to Zd/sec.
After each dynamic tests the ultrasonic wave speed was measured and the ratio of the transit
times, pretest time divided by post test time, was determined and given in Table 7. This ratio
which represents the ratio of pretest wave velocity to post test wave velocity, assuming the
dimension changes during the test are negligible. This assumption appears reasonably as the
strain in the loaded direction for most all concrete material is approximately 0.2 — 0.3 ;Sercent. In
addition, a ratio of the dynamic compressive specimen stress to the average quasistatic
compressive stress was determined and shown in Table 7. Generally, this stress ratio is referred

to as the Dynamic Increase Factor (DIF) in the literature on the effects of strain rate on material

properties.
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TABLE 7
ULTRASONIC GROUT TESTS

SR = STEESS RATIO, TRANSMITTED STRESS (PSI)/7685 PSI
UVR = ULTRASONIC VELOCITY RATIO

- (PRETEST TRANSIT TIME)/(POST-TEST TRANSIT TIME)
UVRL = VEL RATIO IN LOADED DIRECTION
UVR1, UVR2 VEL RATIO IN OTHER DIRECTIONS

SPEC SR UVRL UVR1 UVR2 (UVRL) 2 (UVR1) “2 (UVR2) *2
1 0.84244 1 0.95 0.99 1 0.9025 0.9801
2 0.92217 0.95 0.65 0.71 0.9025 0.4225 0.5041
3 0.48990 1 1 1 1 1 1
4 0.18347 1 0.98 0.97 1 0.9604 0.9409
5 0.16234 0.97 1 1 0.9409 1 -1
6 0.34197 0.98 0.97 0.97 0.9604 0.9409 0.9409
8 0.49374 0.96 0.92 0.92 0.9216 0.8464 0.8464
9 0.56867 0.98 0.96 0.97 0.9604 0.9216 0.9409

10 0.94330 0.97 0.97 0.97 0.9409 0.9409 0.9409
11 0.71756 0.95 0.8 0.88 0.9025 0.64 0.7744
12 0.96348 0.96 0.85 0.85 0.9216 0.7225 0.7225
13 1.15560 0.97 0.83 0.89 0.9409 0.6889 0.7921
14 1.15272 0.91 0.57 0.56 0.8281 0.3249 0.3136
15 1.19210 0.89 0.61 0.67 0.7921 0.3721 0.4489
17 0.94523 0.9 0.59 ~ 0.59 0.81 0.3481 0.3481
18 0.89143 0.87 0.5 0.52 0.7569 0.25 0.2704
19 0.64072 0.95 0.39 0.91 0.9025 0.1521 0.8281
20 0.99902 0.92 0.62 0.73 0.8464 0.3844 0.5329
21 1.12582 0.93 0.78 0.86 0.8649 0.6084 0.7396
22 0.90872 0.95 0.95 0.95 0.9025 0.9025 0.9025
23 1.00190 0.92 0.88 0.89 0.8464 0.7744 0.7921
27 0.90008 0.97 0.9 0.96 0.9409 0.81 0.9216
28 0.64072 0.99 0.83 0.93 0.9801 0.6889 0.8649
29 0.37943 0.92 0.5 0.95 0.8464 0.9025 0.9025
30 0.79153 0.92 0.68 0.68 0.8464 0.4624 0.4624
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Section III
RESULTS AND DISCUSSION
1. Experiments
a. Mortar, Concrete and Granite Tests -

Generally, these tests wére conducted to fgrnish data for calibration of the EVP Model as
given in Section II1.2. All of these tests are very time consuming and expensive. In particular
the confined specimens for both quasistatic and dynamic tests require as much as three hours
preparation time for 'each specimen. For the quasistatic confined high strength granite tests, at
Jeast two hours of MTS machine time was required for completion. In addition each test requires
more than one hour for analysis. For the high confining pressure triaxial test run at WES, as
much as eight hours are required to complete the test. Considering the amount of time required
only a limited number of test could be completed.

In summary, as the strain rate or confining pressure increases the compressive strength
increases. This trend also holds true for the principal stress difference at which dilatancy begins
"to occur. As the conﬁning pressure increases the divatoric stress (principal stress difference) at
which the volumetric strain changes sign also increases. For a given axial stress and increasing
confining pressure there is some confining pressure at which dilatancy is prevented from
occurring.

The response of the material in terms of failure or fracture is highly dependent on the
confining pressure. Only a small amount of confining pressﬁre is required to prevent material
fracture for mortar, concrete or granite. Complete specimen fracture occurs when the

compressive strength (for a given strain rate) is exceeded. However, if approximately ten or
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fifteen percent of the compressive strength of the material is applied as a hydrostatic stress then
practically no visible fracture occurs.

During the dynamic tests of mortar, concrete and granite the general shape of the
reflected portion of SHPB data was observed to change. In particular the shape of the reflected
pulse of granite specimen is different than that of the concrete specimen. |

Figure 16 shows the results of a dynamic unconfined mortar test with a fairly constant
reflected shape with a transmitted pulse magnitude about half the incident pulse. This is typical
of dynamic concrete and mortar tests. For the mortar specimen there was practically no visible
damage to the specimen. The results of a dynamic unconfined granite test of sirﬁilar impacfor
velocity are shown in Figure 17. Here again there was practically no visible damage to the
specimen. However, the reflected pulse magnitude of the granite test (Figure 17) falls near zero
about halfway through the pulse length and the peak transmitted pulse magnitude is
approximately that of the incident pulse. When the impactor velocity is increased, such that the
specimen is completely shattered into small pieces, the reflected pulse magnitude, as shown in
"Figure 18 falls almost to zero but increases again near the end of the transmitted pulse. These
shapes are explained by observing the elastic properties of the materials. In comparison the
characteristic impedances of the materials given in units of Ibf-sec/in®, are 148.9 for steel, 55.0
for granite, 33.5 for concrete and 26.5 for mortar.

Assuming the initial reflection/transmission of the incident pulse of the SHPB at the
incident/specimen interface is elastic, then the reflection coefficients of all the specimens will be
negative indicating a tensile reflected pulse. The tensile reflection coefficient is a result of the
impedance mismatch of the higher steel characteristic impedance and the lower values of the

other materials. As a portion of the compressive incident pulse is transmitted into the specimen a
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reflection/transmission occurs at the specimen/transmission bar interface. Both reflection and
transmission coefficients are positive here, therefore both reflected and transmitted pulses are
compressive. The compressive pulse reflected back into the specimen is now trapped in the
specimen due to the mismatch of the characteristic impedances. This pulse is now reflected and
transmitted as a compressive pulse at each interface. The initial tensile reflected pulse is now
reduced in magnitude, after the double transit time in the specimen, by the compression pulse
transmitted into the incident bar. The amount of reduction of the initial tensile reflection is
dependent on the magnitude of specimen characteristic impedance relative to the steel value.
The higher the specimen characteristic impedance the larger the percentage reduction of the
initial reflected tensile pulse. Thus, the relative reduction in the granite specimen is greater as
shown in Figure 18 for granite when compared to Figure 16 for mortar.

If the specimen remains intact and relatively elastic the reduction in tensile reflected
pulse remains at approximately this value for the remainder of the reflected pulse as evident in

Figure 17 for a low impact test of granite. For higher impact tests, causing high strain rate

effects, the specimen begins to fracture then, the magnitude of the reflected tensile pulse rises

again as shown in Figure 16 for mortar and Figure 18 for granite.
b. Grout Tests
As discussed by Schreyer and Gao [1998] and Nemat Nasser and Horii [1982] columnar

fracture of cementitious material under uniaxial compression occurs in planes that are parallel to

the loading axis. This phenomenon was observed in both the quasistatic and dynamic grout tests

listed in Section IL. 5. Fracture planes as shown schematically in Figure 19 were observed in
several specimens. Post test ultrasonic transit times measurements of all the dynamic grout tests

showed that transit times, of one or both transverse measurements, was always greater than the
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measurement made in the loaded direction. For example, when a cube is loaded in the z
direction afracture plane may occur in the xz plane, such as in Figure 193, and the transit time in
y direction will be greater than the other two directions. For multiple planes, such as in Figure
19b, a schematic of specimen No. 19, the transit time in the y direction will be much larger than
the other two directions. However, for a y load direction as in specimen no. 30, where a fracture
plane occurred diagonally, as shown in Figure 19c, the transverse transit times of directions x
and z were approximately equal and greater than the y or loaded direction transit time.
To show the effect of increasing peak dynamic transmitted stress the transit time rates of
Table 7 are plotted in Figure 20 versus the stress ratio. The stress ratio here is the peak
transmitted stress divided by the average quasistatic strength of the cube tests. The ultrasonic
wave velocity ratio, UVR, defined as the ratio of wave velocities in a certain direction before and
after the compressive test may be formed in the following way. Assuming the transit distance
does not change during the test, ’ .
UVR = Ty/Ta = Vo/Vs €)
“where Ty is transit time before test, T, is transit time after test, Vy is wave velocity before the
test and V, is velocity after the test. In some cases a damage parameter may be related to a
material modulus ratio and wave velocity V may be related to the material modulus E by the
e_quatioﬁ
V=(Ep)* @)

where p is the material density. Assuming the density changc;. is negligible in the tests a ratio of
moduli before and after the test may be fonr;ed by squaring Eq. (4) and dividing VibyV; to
give

(Va/Vy) = (UVR)’ = EJ/Es G
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where E;, is modulus before the dynamic test and E, is modulus after the dynamic tests. The

modulus ratio may be determined by the velocity ratio squared and is plotted in Figure 21 versus

the stress ratio. The major conclusion here is that due to the fracture planes forming parallel to

load direction, ligaments of continuous material parallel to the load direction channel the
ultrasonic waves across the loaded length of the specimen. However, ultrasonic waves trying to
move perpendicular to the fracture planes are impeded and multiple reflections and transmissions
increase the transit time or reduce the wave velocity. This phenomenon is then accompanied by
a reduction in fransverse modulus and tensile strength. Reduction of dynamic tensile stresses
were observed in a study by Ross [1998], where cylinders were subjected to a splitting tensile
test after an application of a longitudinal dynamic compressive stress.

Based on the data shown in Figure 21 the modulus ratio in the loaded direction decreases
only approximately 20% at or near the peak load, where as the modulus in the transverse
direction begins to show a rather large decrease up to more than 50% at the quasistatic strength.

A comparison of data obtained in the dynamic and quasistatic tests are shown in Figures 22a and

' 22b. In work reported by Ahrens [1998], Ross [1998] and here, it appears that ultrasonic wave

velocity reduction of approximately 30 to 40% indicates a modulus reduction greater than 50%
which might be considered zero strength for cementitious material. However, this does not mean
a modulus reduction in one direction will predict a damage parameter that is effective for all
directions. This is borne out in the experiments where transit times or ultrasonic wave velocities
were different in all three directions.

The scatter in the data when comparing quasistatic and dynamic data of Figures 20 and

21 is most likely based on the fact that a set of the quasistatic data are taken from one specimen,
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‘whereas the dynamic data was taken from some 25 specimens. Scatter of properties data from
one concrete specimen to another is in many cases quite large.

2. ELASTIC/ VISCOPLASTIC MODEL

a. Introduction

The slow deformation in time of metals and geomaterials, mainly at high temperatures

has been studied both from theoretical and experimental standpoint since the beginning of this
century. The theory of viscoplasticity of metals, rooted in the works of Ludwik, and Prandtl (for
a history of the main concepts see Nadai [1950], [1963], and Bell [1973]) has been extensively
developed, fnainly in the second half of the century. What concerns geomaterials, such as rocks
and soils, their slow deformation and motion were observed since the beginning of mankind.
However, a scientific approach and description of these phenomena are of relatively recent date.
While, for metals, inelasticity can be explained in principle by means of the mechanics and
physics of dislocation nucleation and propagation, for most rocks it is mainly the mechanisms of
closure and/or opening of microcracks (and sometimes of pores) and their multiplication which

| explain the inelastic properties:compressibility and/or dilatancy, damage, creep, failure, etc.
Dislocation mechanisms also have a role in individual crystal deformation. Irreversible
volumetric deformation during creep is responsible for an increased complexity of the
constitutive laws for geomaterials. |

The first to report that sandstone is dilatant in uniaxial compression tests seems to be

Bauschinger in 1879 (see Bell, [1973]). Afterwards, Bridgm;m [1949] has found that in uniaxial
compression tests, soapstone, marble and diabase are dilatant at high applied stresses. He was the
first to mention that dilatancy is produced by “rapid creep”. Also, he suggested that irreversible

compressibility is due to closing of pores, while dilatancy — to the opening of pores. Further
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pioneering experimental work concemning compressibility and/or dilatancy of rocks is due to
Brace et al. [1966] and Bieniawski [1967], among others. For early papers concerning
‘compressibility and/or dilatancy of rocks, see for 'example Cristescu [1989], Cristescu and
Hunsche [1998], while for soils see Schofield and Wroth [1968] and Wood [1990].
To formulate a general elasto/viscoplastic constitutive equation for a geomaterial the
following ingredients are required:
e Elastic parameters at various stress states;
e Vicld function and the compressibility/dilatancy boundary which can be detemiined from
quasistatic and dynamic confined tests;
e Viscoplastic potential, since for most geomaterials it is expected that the yield function is not
a potential for the irreversible deformation;
e Short-term failure surface.
However, a 3-D model that could capture the main features of the behavior for hi:gh pressures
and high loading rates can be developed based on a series of quasistatic tests at several confining

pressures (at least 4 different confining pressures) and dynamic unconfined and confined data at

different strain rates and at least 2 different confining pressures. The basic steps in the
development of this model are: |

edetermination of the elastic parameters;

o determination of the relaxation boundaries for axial and radial strain, based on which
relaxation boundary for volumetric ‘and deviatoric deformation, respectively can be
constructed;

e determination of viscosity cpefﬁcients for volumetric and deviator deformation should

be determined from data obtained in tests at several different loading rates.
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This second approach was followed in developing a new a 3-D elastic/yiscoplastic model
for ‘concrete. First, we present and analyze the available experimental data and give a rationale
for selecting only the quasi-static results obtained at GERC as a basis'for constructing the model.
The structure of the proposed constitutive equation and a procedure for determining the material
parameters based on a minimal set of data is giver_x. Finally, the model predictions for quasi-static
conditions and dynamic unconfined and confined conditions are tested against tﬁe data. The
comparison is good, with a degree of accuracy within the natural scatter of the data.

b. Experimental basis
On concrete, unconfined compression tests (see Figure A-19) and confined compression
tests at confining pressures of 1.8 MPa, 3.45 MPa, and 6.9 MPa (Figures A-26, A-22, and A-24,

respectively) have been performed at UF/GERC. The loading path in the unconfined test (QSC-

1, strain rate of 0.77 10 /s ) consisted of monotonic loading up to 17.5 MPa, at which level the
axial stress was held constant for a time interval of 9.5 minutes. Instantaneou; creep was
recorded even at this low stress level. At the end of the creep stage, partial unloading followed
by fast reloading showed irreversible strain. Although, slight hysteresis was observed, the
unloading could be considered as elastic, the value of the Young modulus E determined from
the unloading slope being of 38 GPa. At 35 MPa another 9.5 minutes creep-reloading-unloading
cycle have been performed, the value of E was found to be of 42.5 GPa. This test was repeaté&,
this time the specimen was instrumented with axial strain gages and lateral strain gages. The
axial stress vs. volumetric strain curve obtained in this’latest test (see Figure 23) shows
compressibility up to 50 MPa and strong volume expansion (dilatancy) up to failure. The value
of the bulk modulus estimated from the tangent to the quasilinear middle portion of the curve .is

of 16.85 GPa. The average E obtained from both unconfined tests is of 40 GPa.
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In the confined tests the loading was increased monotonically. In all the tests, the

deviatoric stress vs. axial stress curve show an initial nonlinear portion (generally, attributed to

closing of existing microcracks) followed by a quasilinear portion, and a final nonlinear portion

with opposed concavity (see Figure 24); the deviatoric stress vs. volumetric stress curve show
that with increasing deviatoric stress the material becomes strongly dilatant (see Figure 25).
Dilatancy is defined globally as irreversible increase in volume. 1t is clearly seen that an increase
of the confining pressure results in an increase of the dilatancy threshold. Although it is difficult
to separate the elastic contribution to the strain from the irreversible one, an approximate

estimate of E, and K can be obtained from the slope of the quasilinear part of the (o, - 03,) vs.&,

curve, and (o, —0,) vs.&, respectively. In Table 8 we present the estimates of the elastic

moduli as obtained from all the tests. An average value of K of 17.29 GPa has been obtained

from those confined tests, while the corresponding mean value for the Poisson ratio v was found

.

to be of 0.22.

TABLE 8
ELASTIC MODULI AS DETERMINED FROM THE QUASI-STATIC GERC TESTS.

Confining pressure E (GPa) K (GPa)
(MPa)
0 40 16.85
1.8 31.66 13.83
3.45 26.56 115
6.9 36.04 25.62

As discussed in the previous section (II1.2.a), in order to better characterize the influence of the
confining pressure on the deformation and fracture of the material, confined triaxial quasi-static

data at very high confining pressures are necessary. High-confining triaxial test have been
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‘carried out at WES under 150 MPa, 300 MPa, and 450 MPa confining pressure, respectively.
The results of the 150 MPa confined test are presented in Figure 26 to 29. In the hydrostatic
‘phase of this test, 5 loading-creep—unloadi.ng -reloading cycles have been performed (Figure 26).
The material exhibited volume decrease by creep when the load is held constant. From the
unloading slopes the bulk modulus K has been e_valuated. As expected, the bulk modulus is an
increasing function of the applied pressure (see Table 9).

TABLE 9

BULK MODULUS K AS DETERMINED FROM THE
HYDROSTATIC PART OF QUASI-STATIC WES TEST 150 MPA 4™ TRY

Cycle # and Pressure level (MPa) K (GPa)
Cycle#1:9.3 15.1
Cycle #2: 36.75 . | 16.08
Cycle # 3: 72.17 20.98
Cycle #4: 110 22.81
Cycle #5: 148 24.58

‘In the deviatoric part of the test, 4 loading-creep-unloading-reloading cycles have been
performed. Figures 27-28 show the axial and radial strains as functions of the applied deviatoric
stress (0, — ;). The material exhibits irreversible time-dependent behavior. Under constant
load, the axial deformation is increasing. For the first 2 cycles, the absolute value of the radiial
strain decreases under constant load, whereas in the last 3 cycles, the creep changes direction i.e.
the radial deformation increases under constant load (see inset Figure 28). This change in creep
direction can be attributed to the mechanisms of closure/opening of microcracks. More precisely,
it seems that the first 2 cycles were performed at stress levels at which the material is compacting

(i.e. the stress states are bellow the compressibility/dilatancy boundary) while the other cycles
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were at stress levels belonging to the dilatant domain (beyond the compressibility/dilatancy
boundary, where the material dilates). However, the deviatoric stress vs. volumetric strain curve

(Figure 29) shows that the onset of dilatancy is very close to the fracture point. The volumetric

strain £, was computed based on the measured values of the axial straing, and of the radial

strain &, using the formula: &, =& + 2¢,.

The. values of the elastic moduli determined from the deviatoric part of the test are given
in Table 10. The average values of the elastic moduli obtained from the last 3 cycles are: E =
61.52 GPa, v=0.22 and K=37.04 GPa.

The same trends have been observed in the tests at 300 MPa and 450 MPa confining
pressure, respectively. The results of the 300 MPa confined test are presented in Figure 30 to33.
In the hydrostatic phase of this test, 5 loading-creep-unloading-reloading cycles have been
performed (Figure 30). The bulk modulus values determined in the hydrostatic part of the test are
given in Table 11, while the estimates of the elastic moduli determined from the de:viatoric part
of the test are given in Table 12. The average values of the elastic moduli obtained from the last
3 cycles are: E = 61.30 GPa, v=0.27 and K=49 GPa.

TABLE 10

ELASTIC MODULI DETERMINED FROM THE DEVIATORIC
PHASE OF THE QUASI-STATIC WES TEST 150 MPA 4™ TRY

Deviatoric stress level E (GPa) 14 K=E/3(1-2v)
(MPa) - . ' (GPa)
Cyclel: 70 33.72 0.02 11.74
Cycle 2135 71.07 022 439
Cycle 3: 200 56.9 - 0.225 34.5
Cycle 4: 240 56,6 0.2 33.74
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TABLE 11
BULK MODULUS K AS DETERMINED FROM THE HYDROSTATIC
PART OF QUASI-STATIC WES TEST 300 MPA -2ND TRY.

Cycle # and Pressure level (MPa) K (GPa)
Cycle#1:75 ) 21.6
Cycle #2: 150 59.77
Cycle # 3: 226 494
Cycle #4: 300 39.78

The results of the 450 MPa confined test are presented in Figures 34 to 37. In the hydrostatic
phase of this test, 5 loading-creep-unloading-reloading cycles have been performed (Figure 34).
The bulk modulus values determined in the hydrostatic part of the test are given in Table 13,
while the estimates of the elastic moduli determiﬁed from the deviatoric part of the test are given
in Table 14. The average values of the elastic moduli obtained from the last 3 cycles are: E =

64.81 GPa, v=0.23 and K= 40.87 GPa. The average values of the elastic moduli as determined

from the deviatoric phase of each WES test are given in Table 15.

TABLE 12

ELASTIC MODULI DETERMINED FROM THE DEVIATORIC
PHASE OF THE QUASI-STATIC WES TEST 300 MPA -2° TRY

Deviatoric stress level E (GPa) v K=E/3(1-2v)
(MPa) , (GPa)
Cycle 2: 135 57.66 0.35 63.65
Cycle 3: 200 62.37 ' 0.275 46.47
Cycle 4: 240 ~63.52 02 36.25
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TABLE 13

BULK MODULUS K AS DETERMINED FROM THE HYDROSTATIC
PART OF QUASI-STATIC WES TEST 450 MPA -2ND TRY.

Cycle # and Pressure level (MPa) K (GPa)
Cycle #2: 112 | 30.17
Cycle # 3: 225 23.8
Cycle # 4: 337 21.87
Cycle #5: 450 19.36

TABLE 14

ELASTIC MODULI DETERMINED FROM THE DEVIATORIC
PHASE OF THE QUASI-STATIC WES TEST 300 MPA 2NP TRY.

Deviatoric stress level E (GPa) v K=E/3(1-2v)
(MPa) (GPa)
137 60.33 0.026 21.24
256 62.91 0.213 36.63
373 65 0.217 38.28
240 47.71 0.26 47.71
TABLE 15

AVERAGE VALUES OF THE ELASTIC MODULI AS DETERMINED
FROM THE DEVIATORIC PHASE OF EACH WES TEST .

Confining pressure v (average) K (average)
(MPa) ' (GPa)
150 - 0.22 37.04
300 0.27 49
450 0.23 40.87
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Due to the observed scatter of the elastic parameters, in the constitutive equation we have
as;sumed linear elastic response. For the Young modulus we have taken the average dynamic .
‘value E = 60 GPa and a Poisson’s coefficient v = 0.22.

The high confining pressure data do not correlate with the low confining data obtained at
GERC. The volumetric profiles for high confining pressures show that the material is
compressible, while for low confining pressures the material exhibits both ¢ompressible and
dilatant behavior. Therefore, it was decided to use only the low confining data for the calibration
of the elastic/viscoplastic model.

¢. Structure of the constitutive equation

The experimental data show that the material exhibits strong strain-rate sensitivity. A
natural framework in which the main features of the observed behavior can be modeled is
offered by the viscoplasticity theory. In this approach it is considered that the instantaneous

response is elastic, the total strain increment observed in the material being the sum of the elastic

and irreversible (rate-dependent) components.

The general form of the constitutive equation is

e=68+¢ (6)
. O 11 ) .

= - 1 )
‘ 2G+[3K 26)°
é’=A(c,o“',a,é‘)%__—+5(a,o”,£,e’)1 8)

where, ¢£denotes the elastic strain rate , :Tthe irreversible (viscoplastic), o is the Cauchy

e tro
stress tensor, o the stress deviator, and 1 the second order identity tensor, o = 5 and
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’ . . t N
= —;-tr(o" )* are the first and second stress invariants while &= rTe and = —3—tr(£ ) are

the first and second strain invariants, and ¢r stands for the trace operator.

Elastic behavior is expressed in terms of a non-linear Hooke’s law (7) and requires
expressions for the shear modulus G and bulk modulus X (or similar moduli). The onset of
irreversible behavior and the law of evolution of the irreversible strain should be described by

the constitutive functions A(c,&,¢,%) and B(0.5,6,E) , respectively.

Further, creep phenomena observed when the load is held constant or relaxation, which
occurs when strain is held constant, should also be accounted for. To this end, suitable
~ stabilization surfaces should be specified. The stabilization surface is defined as the geometrical
locus of points in the stress space at which the deformation by creep has stopped. For the
determination of the stabilization surface and the specific mathematical expressions of the
constitutive functions we follow the approach proposed by Cristescu (1989).

From triaxial compression tests with stepwise increase of loading followed by creep, the

stabilization curves in the plane o, — &, (axial stress- axial strain) and o, - &, (axial stress-radial
strain) can be determined. Denote, & = f;(0;,0;) and & = f(o,,0,), the stabilization curves for

 the axial strain, and radial strain respectively (o, stands for the axial stress, while o, stands for
the lateral confining pressure). Thus, the material response under axisymmetric triaxial

conditions can be described as

p
&= —1-+—-1—-) o"l+(—-—1—'+——2—'} 0"3+hl<f;(°'v°'3)—€l>’ )

3G 9K 3G 9K
(1 1 ‘12
= ——t— | O, +| ——F— o, + 5\ 0,05)— N 10
& | "6G 9K)0'| (GG 9K) 3 h:<f.( 1‘3) 53) (10)
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where, & and § are the axial strain rate and transversal strain rate, respectively; ( }is the

Macauley bracket which defines the positive 'pért of any expression,
ie. (A)=%( A+|A]) while b and h, are viscosity parameters.

Next, to identify 4(c,5,¢,Z) and B(0,5,6,%) , respectively we express (9) and (10) in
terms of stress and strain invariants. Indeed, note that for axisymmetric conditions the stress are
expressed as:

o,+20, _
c=—L—=2,G

3 =o;—0'3,2"=—§1(51-53) and £=§(al+2£3). (11)

Substituting (11) in (9) and (10) we obtain:

s =0 25 T s\l -
&, =5&-+{hl<f;(0'+3,0' 3) € g>}&.’ )

get
A(0,5,5,%) -{n<ﬁ(a+zf,a—%)-5‘5>"5<f3(‘”2§“""%)‘8+'82">}
(11
B(0,5,6,F) =%{h, <fl(a+-2-3§,a—§)-a—5>+2i5<ﬂ(0+-2-3§,a——f-)—s+—§->}
' (12)

Although, the specific expressions of the stabilization curves f(o;,0;) and f,(0,0;) are most

accurately determined from creep tests, data obtained in quasistatic compression at strain rate of
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the order of 107/s can provide a good approximation of these functions. For concrete, we

approximate the stabilization boundaries by the following functions :

£i( 0'1,0'3)=ax-(0', -0, )+ G(m,n, p,0,) (0, -—0'3)4 , (13)
fi( O'l,0'3)=bl-(0'l -0, )+G(r,s,t,0,) (0, —o'J)8 (14)
and G(a,ﬁ,y,q)=a+(,3—a)°exp(-—0'3/y). (15)

where a,,b, m,n,p,1r, S, L are material parameters. To determine those parameters and

describe correctly the influence of the confining pressure on the behavior, data obtained in tests
under at least six different confining pressures should be used. As pointed out in the discussion
of the available experimental results, the data at low confining pressures do not correlate with the
data at very high confining pressures (WES tests data). Thus, for the fitting of the G function it

was decided to use the GERC data and guess values of the axial and radial strain for confining

pressures of 300 MPa, and 450 MPa respectively (at o, =300 MPa and o, =380 Wa we took
£=0.00172, &= -3.8:107; at o, = 450 MPa and the same deviator, we took &= 0.0017,
&= -3.6-107). The | obtained values
are: a,=2.8-10°,m=1.017-10"%,n=33-107", p=109.57, 4, =-3.4-107°, r=-5.1-107,
s=—0.82-10"%and t=74.6. An a\}erage value of 60 GPa was considered for the dynamic Young

modulus E = 60 GPa and a Poisson’s coefficient v = 0.22. The viscosity coefficient A was

determined using data obtained in unconfined- dynamic tests DCCU3 and DCCUS5; in DCCU3
test, the strain rate was & =52/s and the 16ading rate was &, = 1'10° MPa/s while in DCCUS5

test the strain rate was of £2=107/s and the loading rates of &, = 2.77'10° MPa/s. Indeed, if
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o, and o,? are the stress levels corresponding to the same value of the axial strain & in

DCCU3 and DCCUES, respectively then from (9) follows that:

L) _ =)
. . 0, -0
( 51‘” _ 81(2)) _ G 1
E

£#(e®,0) = £(2.,0) (16)

b=

For 0,"=91.2 MPa, 0,”= 105 MPa, we get b =5.67 10’ 5. A formula similar to (16) can be
used to derive &, =20°10s™".
d. Comparison of the theoretiéal predictions with experimental data

First, we present a comparison between the model predictions and unconfined quasistatic

data QSC-1 (Figure 38). The comparison is very good on the whole. Figures 39-40 shows the
theoretical o, —¢& and o, ~& curves obtained for &,= 1'10° MPa/s and o,= 0 , the

experimental curve obtained in the unconfined dynamic compression test DCCU3 (average

loading rate of 1'10% MPa/s, strain rate of 52/s), and the elastic response. The lower part of the
“experimental dynamic stress- strain curves present concavities, which are not due to rate effects

but rather result from other phenomena such as the crushing of asperities. at the ends of the

specimen. Figures 41-42 show the theoretical o, — & and o, — & curves obtained for &,=

2.7710° MPa/s and 0,= 0, the experimental curve obtained in the unconfined dynarr;ic
compression test DCCUS (average loading rate of 2.77'10% MPa/s, strain rate of 107/s), and the
elastic response. It is to be noted that the trends observed experimentally are well simulated for
high values of the axial stress (the slope 'of experimental curve is close to the slope of the
fheoretical curve for stresses beyond 80 MPa ). The difference between the experiment and

simulation is within the scatter of the experimental data.
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Figure 38. Comparison between the theoretical o, — & curve, elastic curve, and data in
the unconfined quasi-static test QSC-1.
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Figure 40. Comparison between the theoretical o, — & Curve, elastic curve, and data in
the unconfined dynamic test DCCU3 conducted at 2 strain rate of 52/s.
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Figure 41. Comparison between the theoretical o, — & curve, elastic curve, and data in
the unconfined dynamic test DCCUS conducted at a strain rate of 107/s.
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Figure 42. Comparison between the theoretical o, — &, curve, elastic curve, and data in
the unconfined dynamic test DCCU3 conducted at a strain rate of 107/s.
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Figures 43-44 shows a comparison between the theoretical quasistatic response, elastic,

and data obtained in the quasi-static GERC test at 3.45 MPa confining pressure(QSCC-1). The

static stress-strain curves are well reproduced by the model.

Figurgs 45-46 show a comparison between the model predictions and data obtained in the
confined dynamic test DCC4 conducted at a strain rate of 53/s under a lateral confining pressure
of 3.57 MPa. The model reproduces qualitatively the observed behavior.is within the scatter of
the data.

It can be noted that the rate influence and confining pressure influence are correctly
described The theoretical curves correspond to a constant loading rate (the average loading rate
in the test) while in the tests the loading rate was not constant. Therefore, we cannot expect a
perfect agreement between the model and data. However, the general trends of the data are

reproduced and for higher values of the stress the comparison is within the natural scatter of the

data.
e. Conclusions

The model presented was developed in the framework of non-associated viscoplasticity
theory in order to simulate the non-linear stress-dependent and rate-dependent behavior of
concrete,The model captures the basic features of the material behavior such as strain-hardening,
confining pressure, rate influence, creep and relaxation phenomena. Instantaneous response is
modeled as being linear eléstic' although a stress dependence of the elastic moduli has been
experimentally observed. Although, the model developed’is applicable to fully 3-D stress
conditions, all the parameters involved can'be determined from the results of a few quasistatic
and dynamic tests. The agreement between model prediction and data obtained in unconﬁnéd

dynamic tests is rather good, the degree of accuracy being within the natural scatter of the data.
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Figure 43. Comparison between the theoretical o, — & curve, elastic curve, and data in
the confined quasi-static test QSCC-1 (o, = 3.45 MPa).
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Figure 44. Comparison between the theoretical o, — & curve, elastic curve, and data in
the confined quasi-static test QSCC1 (o, = 3.45 MPa).

83




140 |
Axial -
Stress .7
120 (MPa) _
100 -
80~ -1
60— -
/
40 /' -—
[
20/ y i
)0 & o33 . -
/ Axial Strain (IN/IN)
) ] ] ] i ]
0 0 0.001 0.002 0.003 0.004 0.005 0.006
— elastic
988 DCCC4
= model

Figure 45. Comparison between the theoret'ical o, — & curve, elastic curve, and data in
the confined dynamic test DCCC4 conducted at a strain rate of 53/s, confining

pressure 3.57 MPa.
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